Search results for " Meshless method"
showing 10 items of 16 documents
Meshless Simulation of Friction Stir Welding
2007
This paper encompasses our first efforts towards the numerical simulation of friction stir welding by employing a Lagrangian approach. To this end, we have employed a meshless method, namely the Natural Element Method (NEM). Friction Stir welding is a welding process where the union between the work pieces is achieved through the extremely high deformation imposed by a rotating pin, which moves between the two pieces. This extremely high strain is the main responsible of the difficulties associated with the numerical simulation of this forming process. Eulerian and Arbitrary Lagrangian-Eulerian (ALE) frameworks encounter difficulties in some aspects of the simulation. For instance, these ap…
Exponential convergence andH-c multiquadric collocation method for partial differential equations
2003
The radial basis function (RBF) collocation method uses global shape functions to interpolate and collocatethe approximate solution of PDEs. It is a truly meshless method as compared to some of the so-calledmeshless or element-free finite element methods. For the multiquadric and Gaussian RBFs, there are twoways to make the solution converge—either by refining the mesh size
Smoothed Particle Electromagnetics Modelling on HPC-GRID Environment
2012
In this paper a meshless approach on a high performance grid computing environment to run fast onerous electromagnetic numerical simulations, is presented. The grid computing and the message passing interface standard have been employed to improve the computational efficiency of the Smoothed Particle Electromagnetics meshless solver adopted. Applications involving an high number of particles can run on a grid computational environment simulating complex domains not accessible before and offer a promising approach for the coupling of particle models to continuous models. The used meshless solver is straightforward to program and fully parallelizable. The results of the parallel numerical sch…
A novel numerical meshless approach for electric potential estimation in transcranial stimulation
2015
In this paper, a first application of the method of fundamental solutions in estimating the electric potential and the spatial current density distribution in the brain due to transcranial stimulation, is presented. The coupled boundary value p roblems for the electric potential are solved in a meshless way, so avoiding the use of grid based numerical methods. A multi-spherical geometry is considered and numerical results are discussed.
Numerical Investigations of an Implicit Leapfrog Time-Domain Meshless Method
2014
Numerical solution of partial differential equations governing time domain simulations in computational electromagnetics, is usually based on grid methods in space and on explicit schemes in time. A predefined grid in the problem domain and a stability step size restriction need. Recently, the authors have reformulated the meshless framework based on smoothed particle hydrodynamics, in order to be applied for time domain electromagnetic simulation. Despite the good spatial properties, the numerical explicit time integration introduces, also in a meshless context, a severe constraint. In this paper, at first, the stability condition is addressed in a general way by allowing the time step inc…
Numerical Simulation of Friction Stir Welding by Natural Element Methods
2008
In this work we address the problem of numerically simulating the Friction Stir Welding process. Due to the special characteristics of this welding method (i.e., high speed of the rotating pin, very large deformations, etc.) finite element methods (FEM) encounter several difficulties. While Lagrangian simulations suffer from mesh distortion, Eulerian or Arbitrary Lagrangian Eulerian (ALE) ones still have difficulties due to the treatment of convective terms, the treatment of the advancing pin, and many others. Meshless methods somewhat alleviate these problems, allowing for an updated Lagrangian framework in the simulation. Accuracy is not affected by mesh distortion (and hence the name mes…
Corrective meshless particle formulations for time domain Maxwell's equations
2007
AbstractIn this paper a meshless approximation of electromagnetic (EM) field functions and relative differential operators based on particle formulation is proposed. The idea is to obtain numerical solutions for EM problems by passing up the mesh generation usually required to compute derivatives, and by employing a set of particles arbitrarily placed in the problem domain. The meshless Smoothed Particle Hydrodynamics method has been reformulated for solving the time domain Maxwell's curl equations. The consistency of the discretized model is investigated and improvements in the approximation are obtained by modifying the numerical process. Corrective algorithms preserving meshless consiste…
The Poisson problem: A comparison between two approaches based on SPH method
2012
Abstract In this paper two approaches to solve the Poisson problem are presented and compared. The computational schemes are based on Smoothed Particle Hydrodynamics method which is able to perform an integral representation by means of a smoothing kernel function by involving domain particles in the discrete formulation. The first approach is derived by means of the variational formulation of the Poisson problem, while the second one is a direct differential method. Numerical examples on different domain geometries are implemented to verify and compare the proposed approaches; the computational efficiency of the developed methods is also studied.
A numerical meshless particle method in solving the magnetoencephalography forward problem
2012
In this paper, a numerical meshless particle method is presented in order to solve the magnetoencephalography forward problem for analyzing the complex activation patterns in the human brain. The forward problem is devoted to compute the scalp potential and magnetic field distribution generated by a set of current sources representing the neural activity, and in this paper, it has been approached by means of the smoothed particle hydrodynamics method suitably handled. The Poisson equation generated by the quasi-stationary Maxwell's curl equations, by assuming Neumann boundary conditions has been considered, and the current sources have been simulated by current dipoles. The adopted meshless…
A marching-on in time meshless kernel based solver for full-wave electromagnetic simulation
2012
A meshless particle method based on an unconditionally stable time domain numerical scheme, oriented to electromagnetic transient simulations, is presented. The proposed scheme improves the smoothed particle electromagnetics method, already developed by the authors. The time stepping is approached by using the alternating directions implicit finite difference scheme, in a leapfrog way. The proposed formulation is used in order to efficiently overcome the stability relation constraint of explicit schemes. In fact, due to this constraint, large time steps cannot be used with small space steps and vice-versa. The same stability relation holds when the meshless formulation is applied together w…